Zespół naukowców i studentów Politechniki Gdańskiej opracował wstrzykiwalne cementy kostne, które skutecznie i aktywnie wspomagają odbudowę tkanek. Rozwiązanie ma znaleźć szerokie zastosowanie w ortopedii i chirurgii urazowej. Wynalazek zgłoszono już do ochrony patentowej.
Źródło zdjęcia: pg.edu.pl
Obecnie w medycynie stosuje się cementy polimerowe, głównie na bazie polimetakrylanu metylu, i ceramiczne, zwykle na bazie fosforanów wapnia. Te pierwsze nie są jednak bioaktywne, a co za tym idzie – nie tworzą stabilnego biopołączenia z tkanką kostną i nie sprzyjają regeneracji, a z kolei drugie mają słabe właściwości mechaniczne i są trudno aplikowalne. Badacze z Politechniki Gdańskiej pracują nad alternatywnymi materiałami pozbawionymi tych ograniczeń.
Znaczący potencjał do odbudowy kości
– Już dziś możemy zaproponować nowe rozwiązania w aspekcie wstrzykiwalnych biokompozytowych cementów kostnych, które opracowaliśmy na bazie fosforanu magnezu i wzbogaciliśmy różnymi hydrożelami. Nasze cementy wyróżniają się poprawionymi właściwościami użytkowymi i obniżoną kruchością, dzięki czemu posiadają znaczący potencjał do odbudowy kości. Aplikowane w minimalnie inwazyjnych zabiegach chirurgicznych powinny sprostać wymaganiom współczesnej medycyny – mówi dr inż. Marcin Wekwejt z Zakładu Technologii Biomateriałów na Wydziale Inżynierii Mechanicznej i Okrętownictwa PG, kierownik badań.
Prace naukowe gdańskich badaczy koncentrują się na dalszej optymalizacji biofunkcjonalności tworzonych cementów kostnych. Celem jest uzyskanie bardziej biomimetycznego materiału o zwiększonej wytrzymałości mechanicznej (potencjalnie wykazującego również tzw. pseudoplastyczność), a także takiego, który posiada właściwości fizyko-chemiczne dopasowane do konkretnych zastosowań medycznych.
– Podjęliśmy wyzwanie opracowania cementu podwójnie wiążącego, który powstaje w wyniku dwóch „sterowalnych” i zachodzących jednocześnie reakcji utwardzania: ceramicznej (hydratacji) i polimerowej (sieciowania), aby można dodatkowo dostosować tempo utwardzania pod dany zabieg chirurgiczny dla jeszcze łatwiejszej i bezpieczniejszej aplikacji materiału – mówi dr inż. Marcin Wekwejt. – Dążymy do tego, by nasze cementy w sposób odpowiedni ulegały pełnej biodegradacji po implantacji i wykazywały jak najkorzystniejsze właściwości biologiczne. Oznacza to również, że materiał, poprzez uwalnianie bioaktywnych jonów, ma wspomagać namnażanie komórek kostnych oraz sprzyjać tworzeniu stabilnego wiązania z organizmem człowieka, przyczyniając się do skutecznej regeneracji kości.
Cementy mają znaleźć szerokie zastosowanie w medycynie, m.in. przy różnego rodzaju złamaniach, osteoporozie, schorzeniach jak np. peri-implantitis (czyli reakcja zapalna okolicznych tkanek na implant), czy przy ubytkach kostnych po resekcji nowotworów.
Źródło zdjęcia: pg.edu.pl
Autorska technologia
Badania nad ceramicznym cementem kostnym, który stanowi główny komponent przyszłych biomateriałów, zespół badawczy pod kierunkiem dr. inż. Marcina Wekwejta rozpoczął od realizacji projektu pt. ,,Opracowanie nowego cementu kostnego na bazie fosforanu magnezu dedykowanego jako degradowalny substytut kości” z programu Technetium, w który zaangażowani zostali studenci. Badacze przeanalizowali różne parametry technologiczne i ich wpływ na końcowe właściwości tego materiału. Efektem ich pracy była autorska technologia otrzymywania cementu ceramicznego, którą zgłoszono do ochrony patentowej.
W kolejnym projekcie pt. ,,Opracowanie nowego wstrzykiwalnego ceramiczno-polimerowego cementu kostnego” realizowanym z programu Plutonium młodzi naukowcy wraz ze studentami kontynuowali prace, modyfikując cement poprzez dodatek różnych polimerów, w większości naturalnego pochodzenia, aby poprawić właściwości użytkowe materiału.
– Wszczęliśmy już procedury patentowe na trzy proponowane technologie naszych cementów, a efekty pierwszych badań naukowych zostały już opublikowane. Praca ta powstała dzięki nawiązanej współpracy z Instytutem Materiałów Funkcjonalnych w Medycynie i Stomatologii Uniwersytetu w Würzburgu i dotyczy zastosowania w cemencie fosforanowo-magnezowym komponentu hydrożelowego na bazie poli(HEMA) (publikacja). Projekt trwa i z każdym kolejnym etapem przybywa coraz więcej obiecujących wyników. Dzięki temu już teraz przygotowujemy następne wnioski patentowe oraz publikacje naukowe – mówi dr inż. Marcin Wekwejt.
Źródło zdjęcia: pg.edu.pl
Zespoły badawcze
W prace badawcze zaangażowani są studenci z międzywydziałowego Koła Naukowego Materiały w Medycynie (Wydział Chemiczny, Wydział Fizyki Techniczneji Matematyki Stosowanej i Wydział Inżynierii Mechanicznej i Okrętownictwa).
Technetium: inż. Maja Matuszewska, inż. Gabriela Grudzień, inż. Marta Niedbała, Maryia Khamenka, Magdalena Górecka, mgr inż. Maciej Mielnikow.
Plutonium: Maryia Khamenka, Magdalena Górecka, mgr inż. Monika Wojtala, Anna Melnyk, inż. Klaudia Piwko, mgr inż. Rafał Jesiołkiewicz.
Ponadto, projekt Plutonium realizowany jest w ramach współpracy międzyuczelnianej: z dr hab. Justyną Kozłowską, prof. UMK z Uniwersytetu Mikołaja Kopernika w Toruniu, która odpowiada za aspekty chemiczne, dr hab. Anną Ronowską z Gdańskiego Uniwersytetu Medycznego, odpowiedzialną za aspekty biologiczne i prof. Uwe Gbureckiem, specjalistą od cementów ceramicznych z Uniwersytetu w Würzburgu, a także we współpracy międzywydziałowej PG z dr hab. inż. Aleksandrą Mielewczyk-Gryń, prof. PG z Zakładu Ceramiki na WTiMS.
Źródło: pg.edu.pl